Fermi_integral¶
-
plasmapy.mathematics.
Fermi_integral
(x: Union[float, int, complex, numpy.ndarray], j: Union[float, int, complex, numpy.ndarray]) → Union[float, complex, numpy.ndarray]¶ Calculate the complete Fermi-Dirac integral.
Parameters: Returns: integral – Complete Fermi-Dirac integral for given argument and order.
Return type: Raises: TypeError
– If the argument is invalid.UnitsError
– If the argument is aQuantity
but is not dimensionless.ValueError
– If the argument is not entirely finite.
Notes
The complete Fermi-Dirac integral is defined as:
\[F_j (x) = \frac{1}{\Gamma (j+1)} \int_0^{\infty} \frac{t^j}{\exp{(t-x)} + 1} dt\]for j > 0.
This is equivalent to the following polylogarithm function:
\[F_j (x) = -Li_{j+1}\left(-e^{x}\right)\]Warning: at present this function is limited to relatively small arguments due to limitations in the
mpmath
package’s implementation ofpolylog
.Examples
>>> Fermi_integral(0, 0) (0.6931471805599453-0j) >>> Fermi_integral(1, 0) (1.3132616875182228-0j) >>> Fermi_integral(1, 1) (1.8062860704447743-0j)