lower_hybrid_frequency¶

plasmapy.formulary.
lower_hybrid_frequency
(B: Unit("T"), n_i: Unit("1 / m3"), ion='p+', to_hz=False) > Unit("rad / s")¶ Return the lower hybrid frequency.
Aliases:
wlh_
Parameters:  B (Quantity) – The magnetic field magnitude in units convertible to tesla.
 n_i (Quantity) – Ion number density.
 ion (str, optional) – Representation of the ion species (e.g., ‘p’ for protons, ‘D+’ for deuterium, or ‘He4 +1’ for singly ionized helium4), which defaults to protons. If no charge state information is provided, then the ions are assumed to be singly charged.
Returns: omega_lh – The lower hybrid frequency in radians per second.
Return type: Raises: TypeError
– If either ofB
orn_i
is not aQuantity
, or ion is of an inappropriate type.UnitConversionError
– If either ofB
orn_i
is in incorrect units.ValueError
– If either ofB
orn_i
contains invalid values or are of incompatible dimensions, or ion cannot be used to identify an ion or isotope.
Warns: ~astropy.units.UnitsWarning – If units are not provided, SI units are assumed
Notes
The lower hybrid frequency is given through the relation
\[\frac{1}{\omega_{lh}^2} = \frac{1}{\omega_{ci}^2 + \omega_{pi}^2} + \frac{1}{\omega_{ci}\omega_{ce}}\]where \(\omega_{ci}\) is the ion gyrofrequency, \(\omega_{ce}\) is the electron gyrofrequency, and \(\omega_{pi}\) is the ion plasma frequency.
Example
>>> from astropy import units as u >>> lower_hybrid_frequency(0.2*u.T, n_i=5e19*u.m**3, ion='D+') <Quantity 5.78372...e+08 rad / s> >>> lower_hybrid_frequency(0.2*u.T, n_i=5e19*u.m**3, ion='D+', to_hz = True) <Quantity 92050879.3... Hz>
Other Parameters: to_hz (bool) – Set True
to to convert function output from angular frequency to Hz