plasma_dispersion_func_deriv

plasmapy.dispersion.dispersionfunction.plasma_dispersion_func_deriv(zeta: Union[complex, int, float, numpy.ndarray, astropy.units.quantity.Quantity])Union[complex, float, numpy.ndarray, astropy.units.quantity.Quantity]

Calculate the derivative of the plasma dispersion function.

Parameters

zeta (complex, int, float, ndarray, or Quantity) – Argument of plasma dispersion function.

Returns

Zprime – First derivative of plasma dispersion function.

Return type

complex, float, or ndarray

Raises

Notes

The derivative of the plasma dispersion function is defined as:

\[Z'(\zeta) = \pi^{-1/2} \int_{-\infty}^{+\infty} \frac{e^{-x^2}}{(x-\zeta)^2} dx\]

where the argument is a complex number 1.

References

1

Fried, Burton D. and Samuel D. Conte. 1961. The Plasma Dispersion Function: The Hilbert Transformation of the Gaussian. Academic Press (New York and London). ISBN 9781483261737

Examples

>>> plasma_dispersion_func_deriv(0)
(-2+0j)
>>> plasma_dispersion_func_deriv(1j)
(-0.484255687717376...+0j)
>>> plasma_dispersion_func_deriv(-1.52+0.47j)
(0.165871331498228...+0.445879788059350...j)