kappa_velocity_1D¶

plasmapy.formulary.
kappa_velocity_1D
(v, T, kappa, particle='e', v_drift=0, vTh=nan, units='units')¶ Return the probability density at the velocity
v
in m/s to find a particleparticle
in a plasma of temperatureT
following the Kappa distribution function in 1D. The slope of the tail of the Kappa distribution function is set by ‘kappa’, which must be greater than \(1/2\).Parameters:  v (Quantity) – The velocity in units convertible to m/s.
 T (Quantity) – The temperature in Kelvin.
 kappa (Quantity) – The kappa parameter is a dimensionless number which sets the slope of the energy spectrum of suprathermal particles forming the tail of the Kappa velocity distribution function. Kappa must be greater than \(3/2\).
 particle (str, optional) – Representation of the particle species(e.g.,
'p
for protons,'D+'
for deuterium, or'He4 +1'
for \(He_4^{+1}\) (singly ionized helium4)), which defaults to electrons.  v_drift (Quantity, optional) – The drift velocity in units convertible to m/s.
 vTh (Quantity, optional) – Thermal velocity (most probable) in m/s. This is used for
optimization purposes to avoid recalculating
vTh
, for example when integrating over velocityspace.  units (str, optional) – Selects whether to run function with units and unit checks (when equal to “units”) or to run as unitless (when equal to “unitless”). The unitless version is substantially faster for intensive computations.
Returns: f – Probability density in Velocity^1, normalized so that \(\int_{\infty}^{+\infty} f(v) dv = 1\).
Return type: Raises: TypeError
– A parameter argument is not aQuantity
and cannot be converted into aQuantity
.UnitConversionError
– If the parameters is not in appropriate units.ValueError
– If the temperature is negative, or the particle mass or charge state cannot be found.
Notes
In one dimension, the Kappa velocity distribution function describing the distribution of particles with speed \(v\) in a plasma with temperature \(T\) and suprathermal parameter \(\kappa\) is given by:
\[f = A_\kappa \left(1 + \frac{(\vec{v}  \vec{V_{drift}})^2}{\kappa v_{Th},\kappa^2}\right)^{\kappa}\]where \(v_{Th},\kappa\) is the kappa thermal speed and \(A_\kappa = \frac{1}{\sqrt{\pi} \kappa^{3/2} v_{Th},\kappa^2 \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa  1/2)}}\) is the normalization constant.
As \(\kappa\) approaches infinity, the kappa distribution function converges to the Maxwellian distribution function.
Examples
>>> from astropy import units as u >>> v=1 * u.m / u.s >>> kappa_velocity_1D(v=v, T=30000*u.K, kappa=4, particle='e', v_drift=0 * u.m / u.s) <Quantity 6.75549...e07 s / m>
See also