Source code for plasmapy.dispersion.numerical.kinetic_alfven_

"""
Functionality for calculating various numerical solutions to the kinetic
Alfvén dispersion relation.
"""

__all__ = ["kinetic_alfven"]

import warnings
from numbers import Real

import astropy.units as u
import numpy as np
from astropy.constants.si import c

from plasmapy.formulary import frequencies as pfp
from plasmapy.formulary import speeds as speed
from plasmapy.particles import ParticleLike, particle_input
from plasmapy.utils.decorators import validate_quantities
from plasmapy.utils.exceptions import PhysicsWarning

c_si_unitless = c.value


[docs] @particle_input @validate_quantities( B={"can_be_negative": False}, n_i={"can_be_negative": False}, T_e={"can_be_negative": False, "equivalencies": u.temperature_energy()}, T_i={"can_be_negative": False, "equivalencies": u.temperature_energy()}, ) def kinetic_alfven( # noqa: C901, PLR0912 B: u.Quantity[u.T], ion: ParticleLike, k: u.Quantity[u.rad / u.m], n_i: u.Quantity[u.m**-3], theta: u.Quantity[u.deg], *, T_e: u.Quantity[u.K], T_i: u.Quantity[u.K], gamma_e: float = 1, gamma_i: float = 3, mass_numb: int | None = None, Z: float | None = None, ): r"""Using the equation provided in :cite:t:`bellan:2012`, this function calculates the numerical solution to the kinetic Alfvén dispersion relation presented by :cite:t:`hirose:2004`. Parameters ---------- B : `~astropy.units.Quantity` The magnetic field magnitude in units convertible to T. ion : |particle-like| Representation of the ion species (e.g., ``'p'`` for protons, ``'D+'`` for deuterium, ``'He-4 +1'`` for singly ionized helium-4, etc.). k : `~astropy.units.Quantity` Wavenumber in units convertible to rad / m. Either single valued or 1-D array of length :math:`N`. n_i : `~astropy.units.Quantity` Ion number density in units convertible to m\ :sup:`-3`. T_e : `~astropy.units.Quantity`, |keyword-only| The electron temperature in units of K or eV. T_i : `~astropy.units.Quantity`, |keyword-only| The ion temperature in units of K or eV. theta : `~astropy.units.Quantity` The angle of propagation of the wave with respect to the magnetic field, :math:`\cos^{-1}(k_z / k)`, in units convertible to rad. Either single valued or 1-D array of size :math:`M`. gamma_e : real number, |keyword-only|, default: 1 The adiabatic index for electrons. The default value assumes that the electrons are able to equalize their temperature rapidly enough that the electrons are effectively isothermal. gamma_i : real number, |keyword-only|, default: 3 The adiabatic index for ions. The default value assumes that ion motion has only one degree of freedom, namely along magnetic field lines. mass_numb : integer, |keyword-only|, optional The mass number corresponding to ``ion``. Z : real number, |keyword-only|, optional The charge number corresponding to ``ion``. Returns ------- omega : Dict[str, `~astropy.units.Quantity`] A dictionary of computed wave frequencies in units rad / s. The dictionary contains a key for each: ``theta`` value provided. The value for each key will be an :math:`N × M` array. Raises ------ TypeError If applicable arguments are not instances of `~astropy.units.Quantity` or cannot be converted into one. TypeError If ``ion`` is not |particle-like|. TypeError If ``gamma_e``, ``gamma_i``, or ``Z`` are not real numbers. ~astropy.units.UnitTypeError If applicable arguments do not have units convertible to the expected units. ValueError If any of ``B``, ``k``, ``n_i``, ``T_e``, or ``T_i`` is negative. ValueError If ``k`` is negative or zero. ValueError If ``ion`` is not of category ion or element. ValueError If ``B``, ``n_i``, ``T_e``, or ``T_i`` are not single valued `astropy.units.Quantity` (i.e. an array). ValueError If ``k`` or ``theta`` are not single valued or a 1-D array. Notes ----- Using the 2 × 2 matrix approach method from :cite:t:`bellan:2012`, this function computes the corresponding wave frequencies in units of rad / s. This approach comes from :cite:t:`hasegawa:1982`, :cite:t:`morales:1997` and :cite:t:`william:1996`; who argued that a 3 × 3 matrix that describes warm plasma waves can be represented as a 2 × 2 matrix because the compressional (i.e., fast) mode can be factored out. The result is that the determinant, when in the limit of :math:`ω ≫ k_{z}^{2} c^{2}_{\rm s}`, reduces to the kinetic Alfvén dispersion relation. .. math:: ω^2 = k_{\rm z}^2 v_{\rm A}^2 \left(1 + \frac{k_{\rm x}^2 c_{\rm s}^2}{ω_{\rm ci}^2} \right) With :math:`c_{\rm s}` being the wave speed and :math:`ω_{\rm ci}` as the gyrofrequency of the respective ion. The regions in which this is valid are :math:`ω ≪ ω_{\rm ci}` and :math:`ν_{\rm Te} ≫ \frac{ω}{k_{z}} ≫ ν_{\rm Ti}`, with :math:`ν_{\rm Ti}` standing for the thermal speed of the respective ion. There is no restriction on propagation angle. Examples -------- >>> import numpy as np >>> import astropy.units as u >>> from plasmapy.particles import Particle >>> from plasmapy.dispersion.numerical import kinetic_alfven_ >>> inputs = { ... "B": 8.3e-9 * u.T, ... "ion": Particle("p+"), ... "k": np.logspace(-7, -2, 2) * u.rad / u.m, ... "n_i": 5 * u.m**-3, ... "T_e": 1.6e6 * u.K, ... "T_i": 4.0e5 * u.K, ... "theta": 30 * u.deg, ... "gamma_e": 3, ... "gamma_i": 3, ... "Z": 1, ... } >>> kinetic_alfven(**inputs) {30.0: <Quantity [1.24901116e+00, 3.45301796e+08] rad / s>} """ # Validate arguments for arg_name in ("B", "n_i", "T_e", "T_i"): val = locals()[arg_name].squeeze() if val.shape != (): raise ValueError( f"Argument '{arg_name}' must be a single value and not " f"an array of shape '{val.shape}'." ) locals()[arg_name] = val for arg_name in (gamma_e, gamma_i): if not isinstance(arg_name, Real): raise TypeError( f"Expected int or float for argument '{arg_name}', " f"instead got type {type(arg_name)}." ) # Validate argument k k = k.value.squeeze() if k.ndim not in {0, 1}: raise ValueError( "Argument 'k' needs to be a single valued or 1D array " f"astropy Quantity, instead got array of shape {k.shape}." ) elif np.isscalar(k): k = np.array([k]) if np.any(k <= 0): raise ValueError("Argument 'k' can not be negative a or have negative values.") # Validate argument theta theta = theta.value.squeeze() if theta.ndim not in {0, 1}: raise ValueError( "Argument 'theta' needs to be a single valued or 1D array " f"astropy Quantity, instead got array of shape {theta.shape}." ) elif np.isscalar(theta): theta = np.array([theta]) Z = ion.charge_number n_e = Z * n_i c_s = speed.ion_sound_speed( T_e=T_e, T_i=T_i, ion=ion, n_e=n_e, gamma_e=gamma_e, gamma_i=gamma_i, Z=Z, ) v_A = speed.Alfven_speed(B=B, density=n_i, ion=ion) omega_ci = pfp.gyrofrequency(B=B, particle=ion, signed=False) # parameters kz omega = {} for θ in theta: # vectorize this? kz = np.cos(θ) * k kx = np.sqrt(k**2 - kz**2) # parameters sigma, D, and F to simplify equation 3 A = (kz * v_A) ** 2 F = ((kx * c_s) / omega_ci) ** 2 omega[θ] = (np.sqrt(A.value * (1 + F.value))) * u.rad / u.s # thermal speeds for electrons and ions in plasma v_Te = speed.thermal_speed(T=T_e, particle="e-").value v_Ti = speed.thermal_speed(T=T_i, particle=ion).value # Maximum value of omega w_max = np.max(omega[θ]) # Maximum and minimum values for ω/kz omega_kz = omega[θ] / kz omega_kz_max = np.max(omega_kz).value omega_kz_min = np.min(omega_kz).value # Maximum value for ω/kz test if omega_kz_max / v_Te > 0.1 or v_Ti / omega_kz_max > 0.1: warnings.warn( "This calculation produced one or more invalid ω/kz " "value(s), which violates the regime in which the " "dispersion relation is valid (v_Te ≫ ω/kz ≫ v_Ti)", PhysicsWarning, ) # Minimum value for ω/kz test if omega_kz_min / v_Te > 0.1 or v_Ti / omega_kz_min > 0.1: warnings.warn( "This calculation produced one or more invalid ω/kz " "value(s) which violates the regime in which the " "dispersion relation is valid (v_Te ≫ ω/kz ≫ v_Ti)", PhysicsWarning, ) # Dispersion relation is only valid in the regime ω << ω_ci if w_max / omega_ci > 0.1: warnings.warn( "The calculation produced a high-frequency wave, " "which violates the low frequency assumption (ω ≪ ω_ci)", PhysicsWarning, ) return omega