get_electron_temperature

plasmapy.diagnostics.langmuir.get_electron_temperature(exponential_section, bimaxwellian=False, visualize=False, return_fit=False, return_hot_fraction=False)

Obtain the Maxwellian or bi-Maxwellian electron temperature using the exponential fit method.

Parameters
  • exponential_section (Characteristic) – The probe characteristic that is being analyzed.

  • bimaxwellian (bool, optional) – If True the exponential section will be fit assuming bi-Maxwellian electron populations, as opposed to Maxwellian. Default is False.

  • visualize (bool, optional) – If True a plot of the exponential fit is shown. Default is False.

  • return_fit (bool, optional) – If True the parameters of the fit will be returned in addition to the electron temperature. Default is False.

  • return_hot_fraction (float, optional) – If True the total fraction of hot electrons will be returned if the population is bi-Maxwellian. Default is False.

Returns

T_e – The estimated electron temperature in eV. In case of a bi-Maxwellian plasma an array containing two Quantities is returned.

Return type

Quantity, (ndarray)

Notes

In the electron growth region of the probe characteristic the electron current grows exponentially with bias voltage:

\[I_e = I_{es} \textrm{exp} \left( -\frac{e\left(V_P - V \right)}{T_e} \right).\]

In log space the current in this region should be a straight line if the plasma electrons are fully Maxwellian, or exhibit a knee in a bi-Maxwellian case. The slope is inversely proportional to the temperature of the respective electron population:

\[\textrm{log} \left(I_e \right ) \propto \frac{1}{T_e}.\]