"""Functions related to ionization states and the properties thereof."""
__all__ = ["ionization_balance", "Saha", "Z_bal_"]
__aliases__ = ["Z_bal_"]
import astropy.units as u
import numpy as np
from astropy.constants import a0, k_B
from plasmapy.utils.decorators import validate_quantities
[docs]
@validate_quantities(
T_e={"can_be_negative": False, "equivalencies": u.temperature_energy()}
)
def ionization_balance(
n: u.Quantity[u.m**-3],
T_e: u.Quantity[u.K],
) -> u.Quantity[u.dimensionless_unscaled]:
r"""
Return the average ionization state of ions in a plasma assuming that
the numbers of ions in each state are equal.
Z_bal is the estimate average ionization level of a plasma in thermal equilibrium
that balances the number density of ions in two different ionization states.
Z_bal is derived from the Saha equation with the assumptions that
the atoms are of a single species,
are either hydrogenic or completely ionized,
and that there is a balance between ionization and recombination,
meaning that the number of atoms in either state are equal.
The Saha equation and therefore Z_bal are more accurate when the plasma
is at a high density and temperature.
.. math::
Z\_bal = \sqrt{\frac{k_B T_e}{E_H}} \sqrt{\ln{\frac{1}{4 n a_0^3}
(\frac{k_B T_e}{π E_H})^{3/2}}} - \frac{1}{2}
Where :math:`k_B` is the Boltzmann constant,
:math:`a_0` is the Bohr radius, and
:math:`E_H` is the ionization energy of Hydrogen
**Aliases:** `Z_bal_`
Parameters
----------
T_e : `~astropy.units.Quantity`
The electron temperature.
n : `~astropy.units.Quantity`
The electron number density of the plasma.
Returns
-------
Z : `~astropy.units.Quantity`
The average ionization state of the ions in the plasma
assuming that the numbers of ions in each state are equal.
Raises
------
`TypeError`
If either of ``T_e`` or ``n`` is not a `~astropy.units.Quantity`
and cannot be converted into a `~astropy.units.Quantity`.
`~astropy.units.UnitConversionError`
If either of ``T_e`` or ``n`` is not in appropriate units.
Warns
-----
: `~astropy.units.UnitsWarning`
If units are not provided, SI units are assumed.
Examples
--------
>>> import astropy.units as u
>>> T_e = 5000 * u.K
>>> n = 1e19 * u.m**-3
>>> ionization_balance(n, T_e)
<Quantity 0.274...>
>>> T_e = 50 * u.eV
>>> n = 1e10 * u.m**-3
>>> ionization_balance(n, T_e)
<Quantity 12.615...>
"""
E_H = 1 * u.Ry
A = np.sqrt(k_B * T_e / E_H)
B = np.log(1 / (4 * n * a0**3) * (k_B * T_e / (np.pi * E_H)) ** (3 / 2))
return A * np.sqrt(B) - 1 / 2
Z_bal_ = ionization_balance
"""Alias for `~plasmapy.formulary.ionization.ionization_balance`."""
[docs]
@validate_quantities(
T_e={"can_be_negative": False, "equivalencies": u.temperature_energy()}
)
def Saha(
g_j, g_k, n_e: u.Quantity[u.m**-3], E_jk: u.Quantity[u.J], T_e: u.Quantity[u.K]
) -> u.Quantity[u.dimensionless_unscaled]:
r"""
Return the ratio of populations of two ionization states.
The Saha equation, derived in statistical mechanics, gives an
approximation of the ratio of population of ions in two different
ionization states in a plasma. This approximation applies to plasmas
in thermodynamic equilibrium where ionization and recombination of
ions with electrons are balanced.
.. math::
\frac{N_j}{N_k} = \frac{1}{n_e} \frac{g_j}{4 g_k a_0^{3}} \left(
\frac{k_B T_e}{π E_H}
\right)^{\frac{3}{2}}
\exp\left( \frac{-E_{jk}}{k_B T_e} \right)
Where :math:`k_B` is the Boltzmann constant, :math:`a_0` is the Bohr
radius, :math:`E_H` is the ionization energy of hydrogen, :math:`N_j`
and :math:`N_k` are the population of ions in the :math:`j` and
:math:`k` states respectively. This function is equivalent to Eq.
3.47 in `Drake`_.
Parameters
----------
T_e : `~astropy.units.Quantity`
The electron temperature in units of temperature or thermal
energy per particle.
g_j : `int`
The degeneracy of ionization state :math:`j`\ .
g_k : `int`
The degeneracy of ionization state :math:`k`\ .
E_jk : `~astropy.units.Quantity`
The energy difference between ionization states :math:`j` and
:math:`k`\ .
n_e : `~astropy.units.Quantity`
The electron number density of the plasma.
Returns
-------
ratio : `~astropy.units.Quantity`
The ratio of population of ions in ionization state :math:`j` to
state :math:`k`\ .
Raises
------
`TypeError`
If any of ``T_e``, ``E_jk``, or ``n_e`` is not a `~astropy.units.Quantity`
and cannot be converted into a `~astropy.units.Quantity`.
`~astropy.units.UnitConversionError`
If any of ``T_e``, ``E_jk``, or ``n`` is not in appropriate units.
Warns
-----
: `~astropy.units.UnitsWarning`
If units are not provided, SI units are assumed.
Notes
-----
For reference to this function and for more information regarding
the Saha equation, see chapter 3 of R. Paul Drake's book,
"High-Energy-Density Physics: Foundation of Inertial Fusion and
Experimental Astrophysics" (`DOI: 10.1007/978-3-319-67711-8_3`_).
.. _`Drake`: https://doi.org/10.1007/978-3-319-67711-8
.. _`DOI: 10.1007/978-3-319-67711-8_3`: https://doi.org/10.1007/978-3-319-67711-8_3
Examples
--------
>>> import astropy.units as u
>>> T_e = 5000 * u.K
>>> n = 1e19 * u.m**-3
>>> g_j = 2
>>> g_k = 2
>>> E_jk = 1 * u.Ry
>>> Saha(g_j, g_k, n, E_jk, T_e)
<Quantity 3.299...e-06>
>>> T_e = 1 * u.Ry
>>> n = 1e23 * u.m**-3
>>> Saha(g_j, g_k, n, E_jk, T_e)
<Quantity 1114595.586...>
"""
E_h = 1 * u.Ry
degeneracy_factor = (1 / n_e) * g_j / (4 * g_k * a0**3)
physical_constants = (k_B * T_e / (np.pi * E_h)) ** (3 / 2)
boltzmann_factor = np.exp(-E_jk / (k_B * T_e))
return degeneracy_factor * physical_constants * boltzmann_factor