get_electron_temperature
- plasmapy.diagnostics.langmuir.get_electron_temperature(
- exponential_section,
- bimaxwellian: bool = False,
- visualize: bool = False,
- return_fit: bool = False,
- return_hot_fraction: bool = False,
Obtain the Maxwellian or bi-Maxwellian electron temperature using the exponential fit method.
- Parameters:
exponential_section (
Characteristic
) – The probe characteristic that is being analyzed.bimaxwellian (
bool
, optional) – IfTrue
the exponential section will be fit assuming bi-Maxwellian electron populations, as opposed to Maxwellian. Default is False.visualize (
bool
, optional) – IfTrue
a plot of the exponential fit is shown. Default isFalse
.return_fit (
bool
, optional) – IfTrue
the parameters of the fit will be returned in addition to the electron temperature. Default isFalse
.return_hot_fraction (float, optional) – If
True
the total fraction of hot electrons will be returned if the population is bi-Maxwellian. Default isFalse
.
- Returns:
T_e – The estimated electron temperature in eV. In case of a bi-Maxwellian plasma an array containing two Quantities is returned.
- Return type:
Quantity
, (ndarray)
Notes
In the electron growth region of the probe characteristic the electron current grows exponentially with bias voltage:
\[I_e = I_{es} \textrm{exp} \left( -\frac{e\left(V_P - V \right)}{T_e} \right).\]In log space the current in this region should be a straight line if the plasma electrons are fully Maxwellian, or exhibit a knee in a bi-Maxwellian case. The slope is inversely proportional to the temperature of the respective electron population:
\[\textrm{log} \left(I_e \right ) \propto \frac{1}{T_e}.\]