# swept_probe_analysisο

- plasmapy.diagnostics.langmuir.swept_probe_analysis(
*probe_characteristic*,*probe_area: Quantity*,*gas_argument*,*bimaxwellian: bool = False*,*visualize: bool = False*,*plot_electron_fit: bool = False*,*plot_EEDF: bool = False*,Attempt to perform a basic swept probe analysis based on the provided characteristic and probe data. Suitable for single cylindrical probes in low-pressure DC plasmas, since OML is applied.

- Parameters:
**probe_characteristic**(`Characteristic`

) β The swept probe characteristic that is to be analyzed.**probe_area**(`Quantity`

) β The area of the probe exposed to plasma in units convertible to m^{2}.**gas_argument**(argument to instantiate the`Particle`

class.) β`str`

,`int`

, or`Particle`

A string representing a particle, element, isotope, or ion; an integer representing the atomic number of an element; or a`Particle`

instance.**visualize**(`bool`

, optional) β Can be used to plot the characteristic and the obtained parameters. Default is`False`

.**plot_electron_fit**(`bool`

, optional) β If`True`

, the fit of the electron current in the exponential section is shown. Default is False.**plot_EEDF**(`bool`

, optional) β If`True`

, the EEDF is computed and shown. Default is`False`

.

- Returns:
*Results are returned as Dictionary***βT_eβ**(`astropy.units.Quantity`

) β Best estimate of the electron temperature in units of eV. Contains two values if bimaxwellian is True.**βn_eβ**(`astropy.units.Quantity`

) β Estimate of the electron density in units of m^{-3}. See the Notes on plasma densities.**βn_iβ**(`astropy.units.Quantity`

) β Estimate of the ion density in units of m^{-3}. See the Notes on plasma densities.**βn_i_OMLβ**(`astropy.units.Quantity`

) β OML-theory estimate of the ion density in units of m^{-3}. See the Notes on plasma densities.**βV_Fβ**(`astropy.units.Quantity`

) β Estimate of the floating potential in units of V.**βV_Pβ**(`astropy.units.Quantity`

) β Estimate of the plasma potential in units of V.**βI_esβ**(`astropy.units.Quantity`

) β Estimate of the electron saturation current in units of A m^{-2}.**βI_isβ**(`astropy.units.Quantity`

) β Estimate of the ion saturation current in units of A m^{-2}.**βhot_fractionβ**(*float*) β Estimate of the total hot (energetic) electron fraction.

Notes

This function combines the separate probe analysis functions into a single analysis. Results are returned as a Dictionary. On plasma densities: in an ideal quasi-neutral plasma all densities should be equal. However, in practice this will not be the case. The electron density is the poorest estimate due to the hard to obtain knee in the electron current. The density provided by OML theory is likely the best estimate as it is not dependent on the obtained electron temperature, given that the conditions for OML theory hold.