AbstractFitFunction
- class plasmapy.analysis.fit_functions.AbstractFitFunction( )[source]
Bases:
ABC
Abstract class for defining fit functions \(f(x)\) and the tools for fitting the function to a set of data.
- Parameters:
params (tuple[float, ...], optional) – Tuple of values for the function parameters. Equal in size to
param_names
.param_errors (tuple[float, ...], optional) – Tuple of values for the errors associated with the function parameters. Equal in size to
param_names
.
Attributes Summary
A
namedtuple
used for attributesparams
andparam_errors
.The results returned by the curve fitting routine used by
curve_fit
.LaTeX friendly representation of the fit function.
The associated errors of the fitted
params
.Names of the fitted parameters.
The fitted parameters for the fit function.
Coefficient of determination (r-squared) value of the fit.
Methods Summary
__call__
(x[, x_err, reterr])Direct call of the fit function \(f(x)\).
curve_fit
(xdata, ydata, **kwargs)Use a non-linear least squares method to fit the fit function to (
xdata
,ydata
), usingscipy.optimize.curve_fit
.func
(x, *args)The fit function.
func_err
(x[, x_err, rety])Calculate dependent variable uncertainties \(\delta y\) for dependent variables \(y=f(x)\).
root_solve
(x0)Solve for the root of the fit function (i.e. \(f(x_r) = 0\)).
Attributes Documentation
- FitParamTuple
A
namedtuple
used for attributesparams
andparam_errors
. The attributeparam_names
defines the tuple field names.
- curve_fit_results
The results returned by the curve fitting routine used by
curve_fit
. This is typically fromscipy.stats.linregress
orscipy.optimize.curve_fit
.
- latex_str
LaTeX friendly representation of the fit function.
- param_names
Names of the fitted parameters.
- params
The fitted parameters for the fit function.
- rsq
Coefficient of determination (r-squared) value of the fit.
\[ \begin{align}\begin{aligned}r^2 &= 1 - \frac{SS_{res}}{SS_{tot}}\\SS_{res} &= \sum\limits_{i} (y_i - f(x_i))^2\\SS_{tot} &= \sum\limits_{i} (y_i - \bar{y})^2\end{aligned}\end{align} \]where \((x_i, y_i)\) are the sample data pairs, \(f(x_i)\) is the fitted dependent variable corresponding to \(x_i\), and \(\bar{y}\) is the average of the \(y_i\) values.
The \(r^2\) value is an indicator of how close the points \((x_i, y_i)\) lie to the model \(f(x)\). \(r^2\) values range between 0 and 1. Values close to 0 indicate that the points are uncorrelated and have little tendency to lie close to the model, whereas, values close to 1 indicate a high correlation to the model.
Methods Documentation
- __call__(x, x_err=None, reterr: bool = False)[source]
Direct call of the fit function \(f(x)\).
- Parameters:
x (array_like) – Dependent variables.
x_err (array_like, optional) – Errors associated with the independent variables
x
. Must be of size one or equal to the size ofx
.reterr (bool, optional) – (Default:
False
) IfTrue
, return an array of uncertainties associated with the calculated independent variables
- Returns:
y (
numpy.ndarray
) – Corresponding dependent variables \(y=f(x)\) of the independent variablesx
.y_err (
numpy.ndarray
) – Uncertainties associated with the calculated dependent variables \(\delta y\)
- curve_fit(xdata, ydata, **kwargs) None [source]
Use a non-linear least squares method to fit the fit function to (
xdata
,ydata
), usingscipy.optimize.curve_fit
. This will set the attributesparams
,param_errors
, andrsq
.The results of
scipy.optimize.curve_fit
can be obtained viacurve_fit_results
.- Parameters:
xdata (array_like) – The independent variable where data is measured. Should be 1D of length M.
ydata (array_like) – The dependent data associated with
xdata
.**kwargs – Any keywords accepted by
scipy.optimize.curve_fit
.
- Raises:
ValueError – If either
ydata
orxdata
containnumpy.nan
’s, or if incompatible options are used.RuntimeError – If the least-squares minimization fails.
OptimizeWarning – If covariance of the parameters can not be estimated.
- abstract func(x, *args)[source]
The fit function. This signature of the function must first take the independent variable followed by the parameters to be fitted as separate arguments.
- Parameters:
x (array_like) – Independent variables to be passed to the fit function.
*args (tuple[Union[float, int],...]) – The parameters that will be adjusted to make the fit.
- Returns:
The calculated dependent variables of the independent variables
x
.- Return type:
Notes
When sub-classing the definition should look something like:
def func(self, x, a, b, c): x = self._check_x(x) self._check_params(a, b, c) return a * x**2 + b * x + c
- abstract func_err(x, x_err=None, rety: bool = False)[source]
Calculate dependent variable uncertainties \(\delta y\) for dependent variables \(y=f(x)\).
- Parameters:
x (array_like) – Independent variables to be passed to the fit function.
x_err (array_like, optional) – Errors associated with the independent variables
x
. Must be of size one or equal to the size ofx
.rety (bool) – Set to
True
to also return the associated dependent variables \(y = f(x)\).
- Returns:
err (
numpy.ndarray
) – The calculated uncertainties \(\delta y\) of the dependent variables (\(y = f(x)\)) of the independent variablesx
.y (
numpy.ndarray
, optional) – (ifrety == True
) The associated dependent variables \(y = f(x)\).
Notes
A good reference for formulating propagation of uncertainty expressions is:
J. R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, second edition, August 1996 (ISBN: 093570275X)
When sub-classing the definition should look something like:
@modify_docstring(append=AbstractFitFunction.func_err.__original_doc__) def func_err(self, x, x_err=None, rety=False): ''' A simple docstring giving the equation for error propagation, but excluding the parameter descriptions. The @modify_docstring decorator will append the docstring from the parent class. ''' x, x_err = self._check_func_err_params(x, x_err) a, b, c = self.params a_err, b_err, c_err = self.param_errors # calculate error if rety: y = self.func(x, a, b, c) return err, y return err
- root_solve(x0)[source]
Solve for the root of the fit function (i.e. \(f(x_r) = 0\)). This method used
scipy.optimize.fsolve
to find the function roots.- Parameters:
x0 (
ndarray
) – The starting estimate for the roots of \(f(x_r) = 0\).- Returns:
x (
ndarray
) – The solution (or the result of the last iteration for an unsuccessful call).x_err (
ndarray
) – The uncertainty associated with the root calculation. Currently this returns an array ofnumpy.nan
values equal in shape tox
, since there is no determined way to calculate the uncertainties.
Notes
If the full output of
scipy.optimize.fsolve
is desired then one can do:>>> func = Linear() >>> func.params = (1.0, 5.0) >>> func.param_errors = (0.0, 0.0) >>> roots = fsolve(func, -4.0, full_output=True) >>> roots (array([-5.]), {'nfev': 5, 'fjac': array([[-1.]]), 'r': array([-1.]), 'qtf': array([-1.]), 'fvec': np.float64(0.0)}, 1, 'The solution converged.')