Buchsbaum_frequency
- plasmapy.formulary.frequencies.Buchsbaum_frequency(B: Unit('T'), n1: Unit('1 / m3'), n2: Unit('1 / m3'), ion1: str | Integral | Particle | CustomParticle | Quantity, ion2: str | Integral | Particle | CustomParticle | Quantity, Z1: float | None = None, Z2: float | None = None, *, to_hz=False)[source]
Return the Buchsbaum frequency for a two-ion-species plasma.
- Parameters:
B (
Quantity
) – The magnetic field magnitude in units convertible to tesla.n1 (
Quantity
) – Particle number density of ion species #1 in units convertible to m-3.n2 (
Quantity
) – Particle number density of ion species #2 in units convertible to m-3.ion1 (
Particle
) – Representation of ion species #1 (e.g., ‘p’ for protons, ‘D+’ for deuterium, or ‘He-4 +1’ for singly ionized helium-4). If no charge state information is provided, then species #1 is assumed to be singly charged.ion2 (
Particle
) – Representation of ion species #2 (same behavior as for ion1).Z1 (
float
orQuantity
, optional) – The charge state for ion species #1. If not provided, it defaults to the charge number ofion1
.Z2 (
float
orQuantity
, optional) – The charge state for ion species #2. If not provided, it defaults to the charge number ofion2
.
- Returns:
omega_BB – The Buchsbaum frequency of the plasma in units of radians per second. Setting keyword
to_hz=True
will apply the factor of \(1/2π\) and yield a value in Hz.- Return type:
- Raises:
TypeError – If the magnetic field is not a
Quantity
orparticle
is not of an appropriate type.ValueError – If the magnetic field contains invalid values or particle cannot be used to identify a particle or isotope.
- Warns:
UnitsWarning
– If units are not provided, SI units are assumed.
Notes
In a magnetized plasma, the presence of two ion species allows the perpendicular component of the cold-plasma dielectric coefficient \(\epsilon_{\perp}\) to vanish at an angular frequency referred to as the Buchsbaum frequency [Buchsbaum, 1960], also called the bi-ion hybrid resonance frequency [Thompson et al., 1995], or ion-ion hybrid frequency [Vincena et al., 2013]. This frequency can be defined as:
\[ω_{BB} ≡ \sqrt{\frac{ω_{p1}^2 ω_{c2}^2 + ω_{p2}^2 ω_{c1}^2}{ω_{p2}^2 + ω_{p2}^2}}\]Examples
>>> import astropy.units as u >>> fbb = Buchsbaum_frequency(0.1*u.T, 1e18*u.m**-3, 1e18*u.m**-3, "proton", "He+", to_hz=True) >>> fbb <Quantity 764831.28372462 Hz> >>> fc_helium = gyrofrequency(0.1*u.T, "He+", to_hz=True) >>> fc_proton = gyrofrequency(0.1*u.T, "proton", to_hz=True) >>> fbb/fc_helium <Quantity 1.99327444> >>> fbb/fc_proton <Quantity 0.50168706>