cold_plasma_permittivity_LRP
- plasmapy.formulary.dielectric.cold_plasma_permittivity_LRP(
- B: Quantity,
- species: ParticleList | Sequence[str | int | integer | Particle | CustomParticle | Quantity],
- n: list[Quantity] | Quantity,
- omega: Quantity,
Magnetized cold plasma dielectric permittivity tensor elements.
Elements (L, R, P) are given in the “rotating” basis, i.e. in the basis \((\mathbf{u}_{+}, \mathbf{u}_{-}, \mathbf{u}_z)\), where the tensor is diagonal and with \(B ∥ z\).
The \(\exp(-i ω t)\) time-harmonic convention is assumed.
- Parameters:
B (
Quantity
) – Magnetic field magnitude in units convertible to tesla.species ((k,) particle-list-like) – The plasma particle species (e.g.:
['e-', 'D+']
or['e-', 'D+', 'He+']
.n ((k,)
list
ofQuantity
) –list
of species density in units convertible to per cubic meter. The order of the species densities should follow species.omega (
Quantity
) – Electromagnetic wave frequency in rad/s.
- Returns:
Notes
In the rotating frame defined by \((\mathbf{u}_{+}, \mathbf{u}_{-}, \mathbf{u}_z)\) with \(\mathbf{u}_{±}=(\mathbf{u}_x ± \mathbf{u}_y)/\sqrt{2}\), the dielectric tensor takes a diagonal form with elements L, R, P with:
\[ \begin{align}\begin{aligned}L = 1 - \sum_s \frac{ω_{p,s}^2}{ω\left(ω - Ω_{c,s}\right)}\\R = 1 - \sum_s \frac{ω_{p,s}^2}{ω\left(ω + Ω_{c,s}\right)}\\P = 1 - \sum_s \frac{ω_{p,s}^2}{ω^2}\end{aligned}\end{align} \]where \(ω_{p,s}\) is the plasma frequency and \(Ω_{c,s}\) is the signed version of the cyclotron frequency for the species \(s\) [Stix, 1992].
Examples
>>> import astropy.units as u >>> from numpy import pi >>> B = 2 * u.T >>> species = ["e-", "D+"] >>> n = [1e18 * u.m**-3, 1e18 * u.m**-3] >>> omega = 3.7e9 * (2 * pi) * (u.rad / u.s) >>> L, R, P = permittivity = cold_plasma_permittivity_LRP(B, species, n, omega) >>> L <Quantity 0.63333...> >>> permittivity.left # namedtuple-style access <Quantity 0.63333...> >>> R <Quantity 1.41512...> >>> P <Quantity -4.8903...>